Arikan and Alamouti matrices based on fast block-wise inverse jacket transform

نویسندگان

  • Moon Ho Lee
  • Md. Hashem Ali Khan
  • Kyeong Jin Kim
چکیده

Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2, 3, 5, and 6, where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An explicit construction of fast cocyclic jacket transform on the finite field with any size

An orthogonal cocyclic framework of the block-wise inverse Jacket transform (BIJT) is proposed over the finite field. Instead of the conventional block-wise inverse Jacket matrix (BIJM), we investigate the cocyclic block-wise inverse Jacket matrix (CBIJM), where the high-order CBIJM can be factorized into the low-order sparse CBIJMs with a successive block architecture. It has a recursive fashi...

متن کامل

Fast circulant block Jacket transform based on the Pauli matrices

Owing to its orthogonality, simplicity of the inversion and fast algorithms, Jacket transform generalising from the Hadamard transform has played important roles in signal and image processing, mobile communication for coding design, cryptography, etc. In this paper, inspired by the emerging block Jacket transform, a new class of circulant block Jacket matrices (CBJMs) are mathematically define...

متن کامل

A fast hybrid Jacket-Hadamard matrix based diagonal block-wise transform

In this paper, based on the block (element)-wise inverse Jacket matrix, a unified fast hybrid diagonal block-wise transform (FHDBT) algorithm is proposed. A new fast diagonal block matrix decomposition is made by the matrix product of successively lower order diagonal Jacket matrix and Hadamard matrix. Using a common lower order matrix in the form of 1 1, a fast recursive structure can be devel...

متن کامل

Erratum to: "Fast quantum codes based on Pauli block Jacket matrices"

Jacket matrices motivated by the center weight Hadamard matrices have played an important role in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a design approach for the Pauli block jacket matrix achieved by substituting some Pauli matrices for all elements of common matrices. Since, the well-known Pauli matrices have been widely utilized for...

متن کامل

Fast parametric reciprocal-orthogonal jacket transforms

In this paper, we propose a new construction method for a novel class of parametric reciprocal-orthogonal jacket transform (PROJT) having 4N parameters for a sequence length N = 2r+1 that is a power of two, based on the reciprocal-orthogonal parametric (ROP) transform and block diagonal matrices. It is shown that the inverse transform of the proposed PROJT is conveniently obtained by the recipr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013